

Optibess Algorithm - optimizing PV system combined with storage

Optibess Algorithm is a python 3.10+ library for simulating and optimizing a photovoltaic system with power storage.
It uses data from pvgis and algorithms from the pvlib and Nevergrad python libraries, and is the backend part of
the Optibess site.

Quick start

Optibess Algorithm can be installed with:

pip install optibess_algorithm

You can run an optimization on an example system with:

import logging
import time
from optibess_algorithm.power_system_optimizer import NevergradOptimizer

make info logging show
logging.getLogger().setLevel(logging.INFO)
start optimization
start_time = time.time()
optimizer = NevergradOptimizer(budget=100)
opt_output, res = optimizer.run()
print results
print(optimizer.get_candid(opt_output), res)
print(f"Optimization took {time.time() - start_time} seconds")

contents:

	overview
	Quick start

	Installation

	Usage
	Simulation

	Optimization

	Optibess_algorithm
	optibess_algorithm package

Indices and tables

	Index

	Module Index

	Search Page

Optibess Algorithm - optimizing PV system combined with storage

Optibess Algorithm is a python 3.10+ library for simulating and optimizing a photovoltaic system with power storage.
It uses data from pvgis and algorithms from the pvlib and Nevergrad python libraries, and is the backend part of
the Optibess site.

Quick start

Optibess Algorithm can be installed with:

pip install optibess_algorithm

You can run an optimization on an example system with:

import logging
import time
from optibess_algorithm.power_system_optimizer import NevergradOptimizer

make info logging show
logging.getLogger().setLevel(logging.INFO)
start optimization
start_time = time.time()
optimizer = NevergradOptimizer(budget=100)
opt_output, res = optimizer.run()
print results
print(optimizer.get_candid(opt_output), res)
print(f"Optimization took {time.time() - start_time} seconds")

Installation

Optibess Algorithm is a Python 3.10+ library and can be installed with:

pip install Optibess_algorithm

You can also install the main branch instead of the latest release with:

pip install git+https://github.com/pvstorageoptimization/Optibess_algorithm@master

Alternatively, you can clone the repository and run pip install -e . from inside the repository folder.

Usage

Simulation

You can simulate the enrgy flow of a photovoltaic system with energy storage using an OutputCalculator object. You can
recieve financial data and stats on a system after the simulation using a FinancialCalcualtor object.

Energy flow simulation

To simulate a photovoltaic system with energy storage you need to create 2 objects: Producer and PowerStorage

You can create a producer using 3 options:

	using a file with hourly energy output of a year (see :code:’test.csv’ file for an example)

	using pvgis api to recieve hourly data of a year

	using pvlib to calculate the hourly energy output of a year

Create a producer using file with:

from optibess_algorithm.producers import PvProducer

prod = PvProducer(pv_output_file="test.csv", pv_peak_power=13000)

	pv_output_file is the name of the file

	pv_peak_power is the rated power of the producer.

you can also specify the timezone of the system with parameter timezone (defualt is Jerusalem timezone).

Create a producer using pvgis with:

from optibess_algorithm.producers import PvProducer, Tech

prod = PvProducer(latitude=30.02, longitude=34.84, tilt=16, azimuth=0, tech=Tech.TRACKER, pv_peak_power=10000, losses=9)

	latitude and longitude specify the location of the system

	tilt is the angle of the modules from the ground

	azimuth is the direction the module are facing (0 is south)

	tech is the type of modules used in the system (FIXED, TRACKER, or EAST_WEST)

	pv_peak_power is the rated power of the producer.

	losses is the overall PV system losses

Create a producer using pvlib with:

from optibess_algorithm.pv_output_calculator import MODULE_DEFAULT, INVERTER_DEFAULT
from optibess_algorithm.producers import PvProducer, Tech

prod = PvProducer(latitude=30.02, longitude=34.84, tilt=16, azimuth=0, tech=Tech.EAST_WEST, modules_per_string=10,
 strings_per_inverter=2, number_of_inverters=1000, module=MODULE_DEFAULT, inverter=INVERTER_DEFAULT,
 use_bifacial=True, albedo=0.2)

	latitude and longitude specify the location of the system

	tilt is the angle of the modules from the ground

	azimuth is the direction the module are facing (0 is south)

	tech is the type of modules used in the system (FIXED, TRACKER, or EAST_WEST)

	modules_per_string is the number of module in each electronic string

	strings_per_inverter is the number of string connected to each inverter

	number_of_inverters is the number of inverters in the PV system

	module is a pandas series with parameters for the module

	inverter is a pandas series with parameters for the inverter

	use_bifacial is a boolean idicating if the system uses bifacial calculation

	albedo is the fraction of sunlight diffusely reflected by the ground

Create a power storage with:

from optibess_algorithm.power_storage import LithiumPowerStorage

power_storage = LithiumPowerStorage(num_of_years=25, connection_size=5000, block_size=500, battery_hours=2,
 use_default_aug=True)

	num_of_year is the number of years the storage system will be used

	grid_size is the size of the connection to the grid (in kW)

	block_size is the size of each block in the storage system

	battery_hours is the number of hours the storage system should supply each day (used to determine the size of
the system)

	use_default_aug is a boolean idicating using a default augmentation configuration

The size of the system is determined by an augmentation table with the month each augmentation is installed and the
number of blocks in each augmentation. When battery_hours is specified and use_default_aug is true we use 3
augmentations. The first augmentation is in the 0 month (system initial construction) with size that suffice for supplying
battery_hours times grid_size (with extra for losses), and adding about 20% after 8 and 16 years. If use_default_aug
is false only uses te first augmentation.

Additional parameters:

	deg_table, dod_table and rte_table are 3 listed of values between 0 and 1, specifying the
degradation, depth of discharge and round trip efficiency for each year

	pcs_loss, mvbat_loss and trans_loss are different losses in the system

	idle_self_consumption and active_self_consumption are the percentage of the nominal storage system
(nameplate) the battery consumes in each hour for its operation (active for hours wher charging/discharge and idle
for the rest of the hours)

	aug_table is an option to specify the augmentation table directly

Using these objects, create and run an OutputCalculator with:

from optibess_algorithm.output_calculator import OutputCalculator
from optibess_algorithm.producers import PvProducer
from optibess_algorithm.power_storage import LithiumPowerStorage

import numpy as np

power_storage = LithiumPowerStorage(num_of_years=25, connection_size=5000, block_size=500, battery_hours=2,
 use_default_aug=True)
prod = PvProducer("test.csv", pv_peak_power=13000)
output = OutputCalculator(num_of_years=25, grid_size=5000, producer=prod, power_storage=power_storage,
 producer_factor=1, save_all_results=True)
run simulation
output.run()

change print options to show full rows of the matrix
np.set_printoptions(linewidth=1000)
print(output.monthly_averages())

monthly_averages return a matrix with the average of the given stat (default total energy output) in each hour
of the day for each month, in the given year range (default first year only). You can also use plot_stat
function with similar parameters to plot a stat.

Parameters:

	num_of_year is the number of years the system will be used

	grid_size is the size of the connection to the grid (in kW)

	producer is a producer object

	power_storage is a power_storage object

	coupling is the type of coupling (AC/DC) used in the system (below are diagram of the 2 options)

	mvpv_loss, trans_loss, mvbat_loss, pcs_loss and dc_dc_loss are the different
system losses

	bess_discharge_hour is the hour the system start to discharge the storage

	fill_battery_from_grid is a boolean idicating if the battery is filled from the grid when the producer power
is not sufficient to fill the battery

	save_all_results is a boolean idicating saving all the data for all the simulation years (and also save
additional stats needed for some of the financial calculations)

	producer_factor is a number between 0 and 1 which the producer output is multiplied by

Financial calculations

After creating an output calculator you can pass it to a financial calculator that has methods for calculating several
financial stats and financial data:

from optibess_algorithm.output_calculator import OutputCalculator
from optibess_algorithm.constants import *
from optibess_algorithm.producers import PvProducer
from optibess_algorithm.power_storage import LithiumPowerStorage
from optibess_algorithm.financial_calculator import FinancialCalculator

import time

storage = LithiumPowerStorage(25, 5000, aug_table=((0, 83), (96, 16), (192, 16)))
producer = PvProducer("test.csv", pv_peak_power=15000)

output = OutputCalculator(25, 5000, producer, storage, save_all_results=True, fill_battery_from_grid=False,
 bess_discharge_start_hour=17, producer_factor=1)
fc = FinancialCalculator(output_calculator=output, land_size=100, capex_per_land_unit=215000, capex_per_kwp=370,
 opex_per_kwp=5, battery_capex_per_kwh=170, battery_opex_per_kwh=5,
 battery_connection_capex_per_kw=50, battery_connection_opex_per_kw=0.5, fixed_capex=150000,
 fixed_opex=10000, interest_rate=0.04, cpi=0.02, battery_cost_deg=0.07, base_tariff=0.14,
 winter_low_factor=1.1, winter_high_factor=4, transition_low_factor=1,
 transition_high_factor=1.2, summer_low_factor=1.2, summer_high_factor=6,
 buy_from_grid_factor=1)
start_time = time.time()
output.run()
print("irr: ", fc.get_irr())
print("npv: ", fc.get_npv(5))
print("lcoe: ", fc.get_lcoe())
print("lcos: ", fc.get_lcos())
print("lcoe no grid power:", fc.get_lcoe_no_power_costs())
print(f"calculation took: {(time.time() - start_time)} seconds")

The financial stats caluclated:

	irr is the internal rate of return of the system

	npv is the net present value of the system

	lcoe is the levelized cost of energy of the system (energy produced and purchased)

	lcos is the levelized cost of storage of the system

	lcoe no grid power is lcoe of the power from PV only

parameters:

	output_calcualtor is an OutputCalculator object

	land_size is the size of land used for the system

	capex/opex are the cost of the system separated into 5 categories: by land size, by PV size, by battery size,
by the size of the connection to the battery and misc.

	usd_to_ils is a convertion rate from us dollars to israeli new shekel

	interest_rate is the market interest rate

	cpi is the consumer price index

	battery_deg_cost is the annual reduction of battery cost (in percentage)

	base_tariff is the base tariff used to construct the tariff table

	low/high_winter/transition/summer_factor are factors by which the the base tariff is multiplied to create the
tariff table

	buy_from_grid_factor is a factor by which to multiply a tariff to get the prices of buy power

	tariff_table is an option to specify the tariff table directly

The tariff table is constructed according to the following table:

[image: _images/tauz_tariff_table.png]

Note

The current version is only suited for working with tariffs with similar structure to the table above

Diagrams of the system

AC coupling:

[image: _images/ac_coupling.png]
DC coupling:

[image: _images/dc_coupling.png]

Optimization

You can run an optimization on an example system with:

import logging
import time
from optibess_algorithm.power_system_optimizer import NevergradOptimizer

make info logging show
logging.getLogger().setLevel(logging.INFO)
start optimization
start_time = time.time()
optimizer = NevergradOptimizer(budget=100)
opt_output, res = optimizer.run()
print results
print(optimizer.get_candid(opt_output), res)
print(f"Optimization took {time.time() - start_time} seconds")

The outputs of the optimizer run method are the parameters of the optimal result (augmentation table and PV size factor)
and the optimal result (the irr of the system with these parameters).

Run an optimization on a custom system with:

from optibess_algorithm.constants import MAX_BATTERY_HOURS
from optibess_algorithm.financial_calculator import FinancialCalculator
from optibess_algorithm.output_calculator import OutputCalculator
from optibess_algorithm.power_storage import LithiumPowerStorage
from optibess_algorithm.producers import PvProducer
from optibess_algorithm.power_system_optimizer import NevergradOptimizer

import logging
import time
make info logging show
logging.getLogger().setLevel(logging.INFO)
setup power system
storage = LithiumPowerStorage(25, 5000, use_default_aug=True)
producer = PvProducer("test.csv", pv_peak_power=15000)
output = OutputCalculator(25, 5000, producer, storage, save_all_results=False)
finance = FinancialCalculator(output, 100)

start optimization
start_time = time.time()
optimizer = NevergradOptimizer(financial_calculator=finance, use_memory=True, max_aug_num=6, initial_aug_num=3,
 budget=2000)
opt_output, res = optimizer.run()
print results
print(optimizer.get_candid(opt_output), res)
print(f"Optimization took {time.time() - start_time} seconds")

	financial_calculator is a FinancialCalcualtor object

	use_memory is a boolean idicating if the optimizer will use a memory dict to get result of repeating queries
quickly

	max_aug_num is the maximum number of augmentations the optimizer will try in a solution

	initial_aug_num is the number of augmentation in the initial guess

	budget is the number of simulation to use for optimization

Additional parameters for Nevergrad optimizer:

	max_no_change_steps is the maximum number of optimization step with no change before stopping (if none,
does not use early stopping)

	min_change_size is the minimum change between steps to consider as a change for early stopping

	verbosity is print information from the optimization algorithm (0: None, 1: fitness values, 2: fitness
values and recommendation)

Optibess_algorithm

	optibess_algorithm package
	optibess_algorithm.constants module

	optibess_algorithm.financial_calculator module

	optibess_algorithm.output_calculator module

	optibess_algorithm.power_storage module

	optibess_algorithm.power_system_optimizer module

	optibess_algorithm.producers module

	optibess_algorithm.pv_output_calculator module

	optibess_algorithm.utils module

	Module contents

optibess_algorithm package

optibess_algorithm.constants module

optibess_algorithm.financial_calculator module

optibess_algorithm.output_calculator module

optibess_algorithm.power_storage module

optibess_algorithm.power_system_optimizer module

optibess_algorithm.producers module

optibess_algorithm.pv_output_calculator module

optibess_algorithm.utils module

Module contents

Index

 nav.xhtml

 Table of Contents

 		
 Optibess Algorithm - optimizing PV system combined with storage

 		
 overview

 		
 Quick start

 		
 Installation

 		
 Usage

 		
 Simulation

 		
 Energy flow simulation

 		
 Financial calculations

 		
 Diagrams of the system

 		
 Optimization

 		
 Optibess_algorithm

 		
 optibess_algorithm package

 		
 optibess_algorithm.constants module

 		
 optibess_algorithm.financial_calculator module

 		
 optibess_algorithm.output_calculator module

 		
 optibess_algorithm.power_storage module

 		
 optibess_algorithm.power_system_optimizer module

 		
 optibess_algorithm.producers module

 		
 optibess_algorithm.pv_output_calculator module

 		
 optibess_algorithm.utils module

 		
 Module contents

_static/file.png

_static/minus.png

_static/plus.png

_images/ac_coupling.png
PV

Inverter

300,000 kWp.

BESS

15%

BGES

1

1,526,353 kWh

15%

MV-PV
10%
Transformer
—@— 180,000 kW
1.0%
MV-BAT
1.0%

_images/dc_coupling.png
PV

BGES

300,000 kWp.

BESS

Transformer

—@— 180,000 kW

1.0%

15%

DC-DC-
Converter

1

1,526,353 kWh

15%

_images/tauz_tariff_table.png

